Search Research Data

Recent Additions
  • Research Data
    Phonon renormalization and Pomeranchuk instability in the Holstein model
    2024-01-09
    The Holstein model with dispersionless Einstein phonons is one of the simplest models describing electron-phonon interactions in condensed matter. A naive extrapolation of perturbation theory in powers of the relevant dimensionless electron-phonon coupling λ0 suggests that at zero temperature the model exhibits a Pomeranchuk instability characterized by a divergent uniform compressibility at a critical value of λ0 of order unity. In this work, we re-examine this problem using modern functional renormalization group (RG) methods. For dimensions d>3 we find that the RG flow of the Holstein model indeed exhibits a tricritical fixed point associated with a Pomeranchuk instability. This non-Gaussian fixed point is ultraviolet stable and is closely related to the well-known ultraviolet stable fixed point of ϕ3-theory above six dimensions. To realize the Pomeranchuk critical point in the Holstein model at fixed density both the electron-phonon coupling λ0 and the adiabatic ratio ω0/εF have to be fine-tuned to assume critical values of order unity, where ω0 is the phonon frequency and εF is the Fermi energy. However, for dimensions d≤3 we find that the RG flow of the Holstein model does not have any critical fixed points. This rules out a quantum critical point associated with a Pomeranchuk instability in d≤3.
      37  1
  • Research Data
    Theoretical Data: Growth of self-integrated atomic quantum wires and junctions of a Mott semiconductor
    Continued advances in quantum technologies rely on producing nanometer-scale wires. Although several state-of-the-art nanolithographic technologies and bottom-up synthesis processes have been used to engineer these wires, critical challenges remain in growing uniform atomic-scale crystalline wires and constructing their network structures. Here, we discover a simple method to fabricate atomic-scale wires with various arrangements, including stripes, X-junctions, Y-junctions, and nanorings. Single-crystalline atomic-scale wires of a Mott insulator, whose bandgap is comparable to those of wide-gap semiconductors, are spontaneously grown on graphite substrates by pulsed-laser deposition. These wires are one unit cell thick and have an exact width of two and four unit cells (1.4 and 2.8 nm) and lengths up to a few micrometers. We show that the nonequilibrium reaction-diffusion processes may play an essential role in atomic pattern formation. Our findings offer a previously unknown perspective on the nonequilibrium self-organization phenomena on an atomic scale, paving a unique way for the quantum architecture of nano-network.
      17  4
  • Research Data
    Raumkonstruktionen im Kontext sozialer Medien: Selbsteinschaetzungen von Lehramtsstudierenden der Geographie
    Through the ambiguity of the digital, topics for Geography teacher education are being reconfigured. An example of this are constructions of space on social media. Here, teachers require specific knowledge and abilities. Against the backdrop of the TPACK Model, a corresponding test-instrument for pre-service teachers was developed and applied between January and May 2021. Confirmatory factor analysis confirms the TPACK model as an appropriate fit for the data. In the realms of pedagogical knowledge, pre-service teachers working as substitute teachers display higher self-evaluated knowledge and abilities compared to their counterparts who do not hold such a position. Tendencies towards self-evaluated TPACK growth can be identified over the course of students’ studies. The documents attached include the data set as well as the workflow applied in R to test construct validity and hypotheses on self-evaluated pedagogical knowledge and TPACK development over time.
      84  21
  • Research Data
    Data for Inflammatory biotype of ADHD is linked to chronic stress: a data-driven analysis of the inflammatory pro-teome
    Protein Data and Grouping variable for the Article "Inflammatory biotype of ADHD is linked to chronic stress: a data-driven analysis of the inflammatory proteome" published in Translational Psychiatry
      46  8
  • Research Data
    The global water resources and use model WaterGAP v2.2e - model output driven by 20crv3-w5e5 and historical setup of direct human impacts
    2023-10-20
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
      37  126
Most viewed
  • Research Data
    A j_eff 12 Kitaev material on the triangular lattice: The case of NaRuO2
    Motivated by recent reports of a quantum disordered ground state in the triangular lattice compound NaRuO$_2$, we derive a $j_{\rm eff}=1/2$ magnetic model for this system by means of first-principles calculations. The pseudospin Hamiltonian is dominated by bond-dependent off-diagonal $\Gamma$ interactions, complemented by a ferromagnetic Heisenberg exchange and a notably \emph{antiferromagnetic} Kitaev term. In addition to bilinear interactions, we find a sizable four-spin ring exchange contribution with a \emph{strongly anisotropic} character, which has been so far overlooked when modeling Kitaev materials. The analysis of the magnetic model, based on the minimization of the classical energy and exact diagonalization of the quantum Hamiltonian, points toward the existence of a rather robust easy-plane ferromagnetic order, which cannot be easily destabilized by physically relevant perturbations.
      269  30
  • Research Data
    Section-Type Constraints on the Choice of Linguistic Mechanisms in Research Articles: A Corpus-Based Approach
    This thesis investigates the structure of research articles in the field of Computational Linguistics with the goal of establishing that a set of distinctive linguistic features is associated with each section type. The empirical results of the study are derived from the quantitative and qualitative evaluation of research articles from the ACL Anthology Corpus. More than 20,000 articles were analyzed for the purpose of retrieving the target section types and extracting the predefined set of linguistic features from them. Approximately 1,100 articles were found to contain all of the following five section types: abstract, introduction, related work, discussion, and conclusion. These were chosen for the purpose of comparing the frequency of occurrence of the linguistic features across the section types. Making use of frameworks for Natural Language Processing, the Stanford CoreNLP Module, and the Python library SpaCy, as well as scripts created by the author, the frequency scores of the features were retrieved and analyzed with state-of-the-art statistical techniques. The results show that each section type possesses an individual profile of linguistic features which are associated with it more or less strongly. These section-feature associations are shown to be derivable from the hypothesized purpose of each section type. Overall, the findings reported in this thesis provide insights into the writing strategies that authors employ so that the overall goal of the research paper is achieved. The results of the thesis can find implementation in new state-of-the-art applications that assist academic writing and its evaluation in a way that provides the user with a more sophisticated, empirically based feedback on the relationship between linguistic mechanisms and text type. In addition, the potential of the identification of text-type specific linguistic characteristics (a text-feature mapping) can contribute to the development of more robust language-based models for disinformation detection.
      192  6
  • Research Data
    The global water resources and use model WaterGAP v2.2e - model output driven by gswp3-era5 and historical setup of direct human impacts
    2023-10-20
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
      155  228
  • Research Data
    Epitaxial EuPd2Si2 thin films
    Bulk EuPd2Si2 show a temperature-driven valence transisition of europium from ~+2 above 200 K to~+3 below 100 K, which is correlated with a shrinking by approximatly 2 % of the crystal lattice along the two a-axes. Due to this interconnection between lattice and electronic degrees of freedom the influence of strain in epitaxial thin films is particularly interesting. Ambient X-ray diffraction (XRD) confirms an epitaxial relationship of tetragonal EuPd2Si2 on MgO(001) with an out-of plane c-axis orientation for the thin film, whereby the a-axes of both lattices align. XRD at low temperatures reveals a strong coupling of the thin film lattice to the substrate, showing no abrupt compression over the temperature range from 300 to 10 K. Hard X-ray photoelectron spectroscopy at 300 and 20 K reveals a temperature-independent valence of +2.0 for Eu. The evolving biaxial tensile strain upon cooling is suggested to suppress the valence transition. Instead low temperature transport measurements of the resistivity and the Hall effect in a magnetic field up to 5 T point to a film thickness independent phase transition at 16-20 K, indicating magnetic ordering.
      102  2
  • Research Data
    The global water resources and use model WaterGAP v2.2e - model output driven by gswp3-w5e5 and historical setup of direct human impacts
    2023-10-20
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
      94  136