Goethe University Data Repository (GUDe)

The archiving and publication platform for scientific research data at Goethe University Frankfurt.


The Goethe University Data Repository (GUDe) provides a platform for its members to electronically archive, share, and publish their research data. GUDe is jointly operated by the University Library and the University Data Center of the Goethe University. The metadata of all public content is freely available and indexed by search engines as well as scientific web services. GUDe follows the FAIR principles for long-term accessibility (minimum 10 years), allows for reliable citation via DOIs as well as cooperative access to non-public data and operates on DSpace-CRIS v7.

If you have any questions regarding the use of GUDe, please consult the user documentation.

 
Research Data
39
Organisations
161
Projects
8
People
70
Recent Additions
  • Research Data
    8x8 Patch-Antenna-Coupled TeraFET Detector Array for Terahertz Quantum-Cascade-Laser Applications
    2024-04-10
    North, Nicholas K.
    Horbury, Michael D.
    Kondawar, Sanchit
    Kundu, Iman
    Salih, Mohammed
    Krysl, Anastasiya
    Li, Lianhe
    Linfield, Edmund H.
    Freeman, Joshua R.
    Valavanis, Alexander
    Lisauskas, Alvydas
    Roskos, Hartmut G.
    Monolithically integrated, antenna-coupled field-effect transistors (TeraFETs) represent sensitive and fast detectors operable at room temperature, designed to detect radiation across the terahertz range (0.3~THz to 10~THz). For this study, we conducted an experimental characterization of a single monolithically integrated patch-antenna coupled TeraFET optimized for maximum sensitivity at 3.4~THz. This characterization utilized a single-mode high-power terahertz Quantum-Cascade-Laser (QCL) emitting at the designated frequency. Subsequently, we integrated 8x8 of the aforementioned monolithically integrated patch-antenna-coupled TeraFET elements into a parallel readout circuitry, facilitated by the process maturity of a commercial 65-nm process node. This configuration, referred to as the "multi-element" terahertz detector, stands in contrast to conventional detector matrices where each TeraFET represents a pixel. Here, the entire TeraFET network operates as a unified pixel, amalgamating the output signals of all rectifying elements. For the multi-element detector presented here, we emphasize two significant enhancements for sensitive power detection experiments involving a 2.85~THz and a 3.4~THz single-mode quantum-cascade laser (QCL). First, the larger effective detector area improves detector alignment and signal stability with regards to vibrations. Additionally, the 8x8 array configuration provides a significantly reduced source-drain resistance of approximately 300~$\Omega$ at the most sensitive working bias point, which is determined to be at a gate-source bias of approx. 0.6~V in case of the single element. The decreased load impedance results in a substantial reduction in (thermal) detector noise and an increase in the attainable modulation bandwidth, particularly when coupled with a low-noise voltage amplifier circuit. Building upon the introduced approaches, we present a TeraFET-based detector system implementation that achieves a -3~dB modulation bandwidth of 15~MHz around the most sensitive bias point, with the potential to extend up to 20~MHz by further reducing detector impedance through adjustments in the applied gate potential (as depicted in \autoref{fig:RDS_noise_analysis}). Finally, we validate the system's performance using high-resolution spectroscopy data to investigating methanol vapor around 3.4~THz.
      4  37
  • Research Data
    The global water resources and use model WaterGAP v2.2e - daily water storage model output driven by gswp3-era5 and historical setup of direct human impacts
    2024-04-04
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download daily model output for water storage variables for the time period 1901-2019 (2023) that was computed by driving WaterGAP v2.2e by two alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. In the paper connected to this dataset (in review with Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. Here, the single water storage compartments and terrestrial (total) water storage are provided.
      28
  • Research Data
    The global water resources and use model WaterGAP v2.2e - daily water storage model output driven by gswp3-w5e5 and historical setup of direct human impacts
    2024-04-04
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download daily model output for water storage variables for the time period 1901-2019 (2023) that was computed by driving WaterGAP v2.2e by two alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. In the paper connected to this dataset (in review with Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. Here, the single water storage compartments and terrestrial (total) water storage are provided.
      12
  • Research Data
    The global water resources and use model WaterGAP v2.2e - model output driven by gswp3-era5 and historical setup of direct human impacts
    2023-10-20
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2023 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (in review with Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
      17  6
  • Research Data
    The global water resources and use model WaterGAP v2.2e - model output driven by gswp3-era5 and neglecting direct human impacts
    2023-10-20
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2023 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (in review with Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
      12  2
Most viewed
  • Research Data
    A j_eff 12 Kitaev material on the triangular lattice: The case of NaRuO2
    Motivated by recent reports of a quantum disordered ground state in the triangular lattice compound NaRuO$_2$, we derive a $j_{\rm eff}=1/2$ magnetic model for this system by means of first-principles calculations. The pseudospin Hamiltonian is dominated by bond-dependent off-diagonal $\Gamma$ interactions, complemented by a ferromagnetic Heisenberg exchange and a notably \emph{antiferromagnetic} Kitaev term. In addition to bilinear interactions, we find a sizable four-spin ring exchange contribution with a \emph{strongly anisotropic} character, which has been so far overlooked when modeling Kitaev materials. The analysis of the magnetic model, based on the minimization of the classical energy and exact diagonalization of the quantum Hamiltonian, points toward the existence of a rather robust easy-plane ferromagnetic order, which cannot be easily destabilized by physically relevant perturbations.
      280  30
  • Research Data
    Section-Type Constraints on the Choice of Linguistic Mechanisms in Research Articles: A Corpus-Based Approach
    This thesis investigates the structure of research articles in the field of Computational Linguistics with the goal of establishing that a set of distinctive linguistic features is associated with each section type. The empirical results of the study are derived from the quantitative and qualitative evaluation of research articles from the ACL Anthology Corpus. More than 20,000 articles were analyzed for the purpose of retrieving the target section types and extracting the predefined set of linguistic features from them. Approximately 1,100 articles were found to contain all of the following five section types: abstract, introduction, related work, discussion, and conclusion. These were chosen for the purpose of comparing the frequency of occurrence of the linguistic features across the section types. Making use of frameworks for Natural Language Processing, the Stanford CoreNLP Module, and the Python library SpaCy, as well as scripts created by the author, the frequency scores of the features were retrieved and analyzed with state-of-the-art statistical techniques. The results show that each section type possesses an individual profile of linguistic features which are associated with it more or less strongly. These section-feature associations are shown to be derivable from the hypothesized purpose of each section type. Overall, the findings reported in this thesis provide insights into the writing strategies that authors employ so that the overall goal of the research paper is achieved. The results of the thesis can find implementation in new state-of-the-art applications that assist academic writing and its evaluation in a way that provides the user with a more sophisticated, empirically based feedback on the relationship between linguistic mechanisms and text type. In addition, the potential of the identification of text-type specific linguistic characteristics (a text-feature mapping) can contribute to the development of more robust language-based models for disinformation detection.
      207  7
  • Research Data
    The global water resources and use model WaterGAP v2.2e - model output driven by gswp3-era5 and historical setup of direct human impacts
    2023-10-20
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
      207  243
  • Research Data
    The global water resources and use model WaterGAP v2.2e - model output driven by gswp3-w5e5 and historical setup of direct human impacts
    2023-10-20
    Trautmann, Tim
    Ackermann, Sebastian
    Cáceres, Denise
    Flörke, Martina
    Gerdener, Helena
    Kynast, Ellen
    Peiris, Thedini Asali
    Schiebener, Leonie
    Schumacher, Maike
    Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
      158  172
  • Research Data
    Epitaxial EuPd2Si2 thin films
    Bulk EuPd2Si2 show a temperature-driven valence transisition of europium from ~+2 above 200 K to~+3 below 100 K, which is correlated with a shrinking by approximatly 2 % of the crystal lattice along the two a-axes. Due to this interconnection between lattice and electronic degrees of freedom the influence of strain in epitaxial thin films is particularly interesting. Ambient X-ray diffraction (XRD) confirms an epitaxial relationship of tetragonal EuPd2Si2 on MgO(001) with an out-of plane c-axis orientation for the thin film, whereby the a-axes of both lattices align. XRD at low temperatures reveals a strong coupling of the thin film lattice to the substrate, showing no abrupt compression over the temperature range from 300 to 10 K. Hard X-ray photoelectron spectroscopy at 300 and 20 K reveals a temperature-independent valence of +2.0 for Eu. The evolving biaxial tensile strain upon cooling is suggested to suppress the valence transition. Instead low temperature transport measurements of the resistivity and the Hall effect in a magnetic field up to 5 T point to a film thickness independent phase transition at 16-20 K, indicating magnetic ordering.
      110  2