Goethe University Data Repository (GUDe)
The archiving and publication platform for scientific research data at Goethe University Frankfurt.
The Goethe University Data Repository (GUDe) provides a platform for its members to electronically archive, share, and publish their research data. GUDe is jointly operated by the University Library and the University Data Center of the Goethe University. The metadata of all public content is freely available and indexed by search engines as well as scientific web services. GUDe follows the FAIR principles for long-term accessibility (minimum 10 years), allows for reliable citation via DOIs as well as cooperative access to non-public data and operates on DSpace-CRIS v7.
If you have any questions regarding the use of GUDe, please consult the user documentation.
- Research DataAssessing Groundwater Drought Hazard in the Case of Groundwater Storage Trends caused by Human Water Use as well as Climate Variability and Change - Data set2024-08-14Over the last decades, increasing groundwater abstractions, and to a lesser extent climate variability and change, have led to groundwater depletion (GWD), especially in major irrigation areas. Such negative trends in groundwater storage (GWS) are problematic in the context of groundwater drought detection since they can superimpose climate-induced drought signals including climate-induced groundwater pumping. As this is currently not considered in large-scale drought early warning systems (LDEWSs), we used time series of monthly GWS from the global hydrological model WaterGAP 2.2e to investigate how groundwater drought can best be quantified in an LDEWS covering GWD regions. Groundwater drought hazard indicators (GDHIs) based on three variants of GWS were analyzed: (1) GWS as impacted by human water use (GWS_ant), (2) naturalized GWS assuming no human water use (GWS_nat), and (3) GWS_ltc, in which the linear trend of GWS_ant is removed. Here, the reader can download 1) monthly time series of GWS_nat during 1980-2019, 2) GDHIs assessed in the study, 3) the R scripts for computing the indicators and other data (including required input data), and 4) WaterGAP-related data (e.g., landmask, big cities), and other meta data (e.g., GWD grid cells and LTC grid cells). WaterGAP 2.2e model output from an anthropogenic model run is available at https://doi.org/10.25716/GUDE.0TNY-KJPG.
2 15 - Research Data8x8 Patch-Antenna-Coupled TeraFET Detector Array for Terahertz Quantum-Cascade-Laser Applications2024-07-31Monolithically integrated, antenna-coupled field-effect transistors (TeraFETs) are rapid and sensitive detectors for the terahertz range (0.3-10 THz) that can operate at room temperature. We conducted experimental characterizations of a single patch-antenna coupled TeraFET optimized for 3.4 THz operation and its integration into an 8×8 multi-element detector configuration. In this configuration, the entire TeraFET array operates as a unified detector element, combining the output signals of all detector elements. Both detectors were realized using a mature commercial Si-CMOS 65-nm process node. Our experimental characterization employed single-mode Quantum-Cascade Lasers (QCLs) emitting at 2.85 THz and 3.4 THz. The 8x8 multi-element detector yields two major improvements for sensitive power detection experiments. First, the larger detector area simplifies alignment and enhances signal stability. Second, the reduced detector impedance enabled the implementation of a TeraFET+QCL system capable of providing a -3 dB modulation bandwidth up to 21 MHz, which is currently limited primarily by the chosen readout circuitry. Finally, we validate the system’s performance by providing high resolution gas spectroscopy data for methanol vapor around 3.4 THz, where a detection limit of 1.6e-5 absorbance, or 2.6e11 molecules/cm3 was estimated under optimal coupling conditions.
65 4 - Research DataReverse quantum annealing assisted by forward annealing2024-07Quantum annealers conventionally use forward annealing to generate heuristic solutions. Reverse annealing can potentially generate better solutions but necessitates an appropriate initial state. Ways to find such states are generally unknown or highly problem dependent, offer limited success and severely restrict the scope of reverse annealing. We propose a general method that improves the overall solution quality and quantity by feeding reverse annealing with low quality solutions obtained from forward annealing. Experimental demonstration of solving the graph coloring problem using the D-Wave quantum annealers shows that our method is able to convert invalid solutions obtained from forward annealing to at least one valid solution obtained after assisted reverse annealing for 57% of 459 random Erdős-Rényi graphs. Our method significantly outperforms random initial states, obtains more unique solutions on average, and widens the applicability of reverse annealing. Although the average number of valid solutions obtained drops exponentially with the problem size, a scaling analysis for the graph coloring problem shows that our method effectively extends the computational reach of conventional forward annealing using reverse annealing.
64 5 - Research DataStructural response of G protein binding to the cyclodepsipeptide inhibitor FR900359 probed by NMR spectroscopy2024-07-04The cyclodepsipeptide FR900359 (FR) and its analogs are able to selectively inhibit the class of Gq proteins by blocking GDP/GTP exchange. The inhibitor binding site of Gq has been characterized by X-ray crystallography, and various binding and functional studies have determined binding kinetics and mode of inhibition. Here we investigate isotope-labeled FR bound to the membrane-anchored G protein heterotrimer by solid-state nuclear magnetic resonance (ssNMR) and in solution by liquid-state NMR. The resulting data allowed us to identify regions of the inhibitor which show especially pronounced effects upon binding and revealed a generally rigid binding mode in the cis conformation under native-like conditions. The inclusion of the membrane environment allowed us to show a deep penetration of FR into the lipid bilayer illustrating a possible access mode of FR into the cell. Dynamic nuclear polarization (DNP)-enhanced ssNMR was used to observe the structural response of specific segments of the Gα subunit to inhibitor binding. This revealed rigidification of the switch I binding site and an allosteric response in the α5 helix as well as suppression of structural changes induced by nucleotide exchange due to inhibition by FR. Our NMR studies of the FR-G protein complex conducted directly within a native membrane environment provide important insights into the inhibitors access via the lipid membrane, binding mode, and structural allosteric effects.
18 2 - Research DataEffect of stem design and positioning on the leg axis after total hip arthroplasty: a secondary analysis2024Abstract: Background/Objectives: Various parameters, like femoral offset and leg length, are associated with good patient outcomes after total hip arthroplasty. In this prospective study, the effects of stem design, its placement in the proximal femur and the resulting femoral offset on the total leg axis were investigated. Methods: The 27 patients included in this study received biplanar radiography (EOS® Imaging) with 3D reconstruction using sterEOS software both preoperatively and postoperatively. For all leg alignment parameters obtained from the 3D reconstruction and from measurements using mediCAD, the deltas between the postoperative and preoperative values were determined. Patients were divided into those who received a short-stem prosthesis and those who received a straight-stem prosthesis. Results: The change in femoral offset with the implantation of a short-stem prosthesis was significantly greater than that with the implantation of a straight-stem prosthesis (11.4 ± 5.9 vs. 4.6 ± 7.4 mm, p = 0.014). Compared with the straight-stem implantation, short-stem implantation caused a significantly greater increase in the varus orientation of the leg (-1.4 ± 0.9 vs. -0.4 ± 1.4 °, p = 0.048). There was no significant difference in the positioning of the short-stem prosthesis compared to the straight-stem prosthesis in the proximal femur (3.6 ± 3.1 vs. 2.6 ± 1.9 °, p = 0.317). Conclusions: These findings substantiate the impact of prosthesis design on offset and leg alignment. The implantation of short-stems is more variable and requires precise planning. Intraoperative non-physiological offset changes and varus deviation of the leg axis should be avoided. Trial registration: The study was retrospectively registered with the German Clinical Trials Register (DRKS) under the number DRKS00015053 on the 1st of August 2018.
31 3
- Research DataA j_eff 12 Kitaev material on the triangular lattice: The case of NaRuO22023-06-07Motivated by recent reports of a quantum disordered ground state in the triangular lattice compound NaRuO$_2$, we derive a $j_{\rm eff}=1/2$ magnetic model for this system by means of first-principles calculations. The pseudospin Hamiltonian is dominated by bond-dependent off-diagonal $\Gamma$ interactions, complemented by a ferromagnetic Heisenberg exchange and a notably \emph{antiferromagnetic} Kitaev term. In addition to bilinear interactions, we find a sizable four-spin ring exchange contribution with a \emph{strongly anisotropic} character, which has been so far overlooked when modeling Kitaev materials. The analysis of the magnetic model, based on the minimization of the classical energy and exact diagonalization of the quantum Hamiltonian, points toward the existence of a rather robust easy-plane ferromagnetic order, which cannot be easily destabilized by physically relevant perturbations.
321 35 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by gswp3-w5e5 and historical setup of direct human impacts2023-10-20Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
270 214 - Research DataSection-Type Constraints on the Choice of Linguistic Mechanisms in Research Articles: A Corpus-Based Approach2023This thesis investigates the structure of research articles in the field of Computational Linguistics with the goal of establishing that a set of distinctive linguistic features is associated with each section type. The empirical results of the study are derived from the quantitative and qualitative evaluation of research articles from the ACL Anthology Corpus. More than 20,000 articles were analyzed for the purpose of retrieving the target section types and extracting the predefined set of linguistic features from them. Approximately 1,100 articles were found to contain all of the following five section types: abstract, introduction, related work, discussion, and conclusion. These were chosen for the purpose of comparing the frequency of occurrence of the linguistic features across the section types. Making use of frameworks for Natural Language Processing, the Stanford CoreNLP Module, and the Python library SpaCy, as well as scripts created by the author, the frequency scores of the features were retrieved and analyzed with state-of-the-art statistical techniques. The results show that each section type possesses an individual profile of linguistic features which are associated with it more or less strongly. These section-feature associations are shown to be derivable from the hypothesized purpose of each section type. Overall, the findings reported in this thesis provide insights into the writing strategies that authors employ so that the overall goal of the research paper is achieved. The results of the thesis can find implementation in new state-of-the-art applications that assist academic writing and its evaluation in a way that provides the user with a more sophisticated, empirically based feedback on the relationship between linguistic mechanisms and text type. In addition, the potential of the identification of text-type specific linguistic characteristics (a text-feature mapping) can contribute to the development of more robust language-based models for disinformation detection.
225 8 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by gswp3-era5 and historical setup of direct human impacts2023-10-20Assessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
207 243 - Research DataEpitaxial EuPd2Si2 thin films2022-11Bulk EuPd2Si2 show a temperature-driven valence transisition of europium from ~+2 above 200 K to~+3 below 100 K, which is correlated with a shrinking by approximatly 2 % of the crystal lattice along the two a-axes. Due to this interconnection between lattice and electronic degrees of freedom the influence of strain in epitaxial thin films is particularly interesting. Ambient X-ray diffraction (XRD) confirms an epitaxial relationship of tetragonal EuPd2Si2 on MgO(001) with an out-of plane c-axis orientation for the thin film, whereby the a-axes of both lattices align. XRD at low temperatures reveals a strong coupling of the thin film lattice to the substrate, showing no abrupt compression over the temperature range from 300 to 10 K. Hard X-ray photoelectron spectroscopy at 300 and 20 K reveals a temperature-independent valence of +2.0 for Eu. The evolving biaxial tensile strain upon cooling is suggested to suppress the valence transition. Instead low temperature transport measurements of the resistivity and the Hall effect in a magnetic field up to 5 T point to a film thickness independent phase transition at 16-20 K, indicating magnetic ordering.
123 2