Browsing by Affiliation "Ruhr University Bochum"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- Research DataThe global water resources and use model WaterGAP v2.2d - model output driven by gswp3-w5e5 and historical setup of direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
116 96 - Research DataThe global water resources and use model WaterGAP v2.2d - model output driven by gswp3-w5e5 and neglecting direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
76 31 - Research DataThe global water resources and use model WaterGAP v2.2e - daily water storage model output driven by gswp3-era5 and historical setup of direct human impacts2024-04-04Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download daily model output for water storage variables for the time period 1901-2019 (2023) that was computed by driving WaterGAP v2.2e by two alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. In the paper connected to this dataset (in review with Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. Here, the single water storage compartments and terrestrial (total) water storage are provided.
100 31 - Research DataThe global water resources and use model WaterGAP v2.2e - daily water storage model output driven by gswp3-w5e5 and historical setup of direct human impacts2024-04-04Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download daily model output for water storage variables for the time period 1901-2019 (2023) that was computed by driving WaterGAP v2.2e by two alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. In the paper connected to this dataset (in review with Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. Here, the single water storage compartments and terrestrial (total) water storage are provided.
85 19 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by 20crv3-era5 and historical setup of direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
116 163 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by 20crv3-era5 and neglecting direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
47 60 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by 20crv3-w5e5 and historical setup of direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
90 152 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by 20crv3-w5e5 and neglecting direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
56 56 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by gswp3-era5 and historical setup of direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2023 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (in review with Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
189 239 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by gswp3-era5 and neglecting direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2023 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (in review with Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
28 29 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by gswp3-w5e5 and historical setup of direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
432 266 - Research DataThe global water resources and use model WaterGAP v2.2e - model output driven by gswp3-w5e5 and neglecting direct human impacts2023-10-20Trautmann, TimAckermann, SebastianCáceres, DeniseFlörke, MartinaGerdener, HelenaKynast, EllenPeiris, Thedini AsaliSchiebener, LeonieSchumacher, MaikeAssessing global freshwater resources and human water use is of value for a number of needs but challenging. The global water use and water availability model WaterGAP has been in development since 1996 and has served a range of applications such as assessments of global water resources and water stress, also under the impact of climate change, drought hazard quantification, Life Cycle Assessments, water (over)use and consequently depletion of water resources and a better understanding of terrestrial water storage variations (jointly with satellite observations). Here, the reader can download model output for the time period 1901-2019 that was computed by driving WaterGAP v2.2e by four alternative climate datasets (climate forcings) that were generated in the ISIMIP context (https://www.isimip.org) and are described in https://data.isimip.org/10.48364/ISIMIP.982724. For two climate datasets, model runs up to 2021 or 2022 are available. For comparison, output of a version of WaterGAP v2.2d that is calibrated to the same dataset of observed streamflow as WaterGAP v2.2e is provided. Each of the climate forcing-model version combinations is run in two socio-economic settings, histsoc and nosoc. In nosoc, human water use is set to zero and man-made reservoirs are assumed to be non-existant. In the paper connected to this dataset (to be submitted to Geoscientific Model Development), the newest model version, WaterGAP v2.2e is described by providing the modifications to the previous version v2.2d (Müller Schmied et al. 2021) and the corresponding changes in model output. The most important and requested model outputs (total water storage variations, streamflow and water use) are evaluated against observation data. Standard model output is described as well as the specifics of the WaterGAP contribution within the ISIMIP framework. Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Döll, P. (2021): The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
69 66